What is the inverse function of #f(x)=3^x+2#?

1 Answer
Mar 27, 2017

#y=(ln(x-2))/ln(3)#

Explanation:

Set #" "y=3^x+2#

The #y# is called the 'dependant variable' and the #x# is called the 'independent variable'. That is because we may assign any value we choose to #x# and the value of #y# depends on what we assign to #x#

We need to make #x# the dependant variable.

I am assuming you know the shortcut methods of manipulation.

Move the 2 to the other side

#y-2=3^x#

Take logs of both sides ( I choose ln)

#ln(y-2)=ln(3^x)#

This is the same as:

#ln(y-2)=xln(3)#

Move #ln(3)# to the other side

#(ln(y-2))/ln(3)=x#

Where there is a #y# write #x# and where there is a #x# write #y#

#(ln(x-2))/ln(3)=y#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Notice that

#y=(ln(x-2))/ln(3)#

is a reflection about #y=x#

of #y=3^x+2#
Tony B