Question #6cafa

1 Answer
May 12, 2017

#y'' - y' - 2y =-12(x + 2)#

Explanation:

Given: # y = e^(2x) + 3(2x+3) = e^(2x) +6x + 9#

Find the first derivative using #(e^u)' = u' e^u#:

Let #u = 2x; " " u' = 2#

# y ' = 2e^(2x) + 6#

#y'' = 4 e^(2x)#

Find #" "y'' - y' - 2y#:

#y'' - y' - 2y = 4 e^(2x) - ( 2e^(2x) + 6) - 2(e^(2x) +6x + 9)#

Distribute the negatives:

#y'' - y' - 2y = 4 e^(2x) - 2e^(2x) - 6 -2e^(2x) - 12x -18#

Simplify by combining like-terms:

#y'' - y' - 2y = -6 - 12x - 18 = -24 -12x#

Factor: #" "y'' - y' - 2y =-12(x + 2)#