What is the remainder when #x^1999# is divided by #(x^2-1)# ?
2 Answers
Explanation:
Note that:
#(x^2-1)(x^1997+x^1995+x^1993+...+x^3+x)#
#=x^2(x^1997+x^1995+x^1993+...+x^3+x)-(x^1997+x^1995+x^1993+...+x^3+x)#
#=(x^1999+color(red)(cancel(color(black)(x^1997)))+color(purple)(cancel(color(black)(x^1995)))+...+color(cyan)(cancel(color(black)(x^5)))+color(green)(cancel(color(black)(x^3))))-(color(red)(cancel(color(black)(x^1997)))+color(purple)(cancel(color(black)(x^1995)))+color(blue)(cancel(color(black)(x^1993)))+...+color(green)(cancel(color(black)(x^3)))+x)#
#=x^1999-x#
So:
#x^1999 = (x^2-1)(x^1997+x^1995+x^1993+...+x^3+x)+x#
That is:
#x^1999/(x^2-1) = x^1997+x^1995+x^1993+...+x^3+x# with remainder
#x#
The polynomial
Explanation:
Calling
as a generic
so we have
and
solving we have
in the present case we have