Solve #f''(x) = 4 + cos(x)#, #f(0)=-1#, and #f((7pi)/2)=0#?

1 Answer
Apr 22, 2017

Integrate twice and then use the boundary conditions to solve for the constants.

Explanation:

Given: #f''(x) = 4 + cos(x)#, #f(0)=-1#, and #f((7pi)/2)=0#

Integrate:

#f'(x) = intf''(x)dx = int4 + cos(x)dx#

#f'(x) = 4x + sin(x) + C_1#

Integrate again:

#f(x) = intf'(x)dx = int4x + sin(x) + C_1dx#

#f(x) = 2x^2 - cos(x) + C_1x + C_2#

Use the first boundary condition to find the value of #C_2#

#f(0) = -1 = 2(0)^2 - cos(0) + C_1(0) + C_2#

#-1 = 0 - 1 + 0 + C_2#

#C_2 = 0#

Use the second boundary condition to find the value of #C_1#

#f((7pi)/2)=0 = 2((7pi)/2)^2 - cos((7pi)/2) + C_1((7pi)/2)#

#0 = 2((7pi)/2)^2 + C_1((7pi)/2)#

#C_1 = -7pi#

#f(x) = 2x^2 - cos(x) -7pix#