Question #b6651

2 Answers
Apr 23, 2017

The equation is:

#(x-3)^2+(y-2)^2=(sqrt117)^2#

Explanation:

The standard Cartesian form for the equation of a circle is:

#(x-h)^2+(y-k)^2=r^2" [1]"#

where #(x,y)# is any point of the circle, #(h,k)# is the center point, and r is the radius.

Substitute the center #(3,2)# into equation [1]:

#(x-3)^2+(y-2)^2=r^2" [2]"#

Use equation [2] and the point #(-6,-4)#, to find the value of r:

#(-6-3)^2+(-4-2)^2=r^2#

#(-9)^2+(-6)^2=r^2#

#81+36=r^2#

#r^2 = 117#

#r = sqrt(117)#

The equation is:

#(x-3)^2+(y-2)^2=(sqrt117)^2" [3]"#

Apr 23, 2017

Use distance formula to find the radius.
#r = sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)#

#r = sqrt((-6 - 3)^2 + (-4 - 2)^2)#

#r = sqrt((-9)^2 + (-6)^2)#

#r = sqrt(81 + 36)#

#r = sqrt(117)#

Now plug into equation of a circle

#(x-h)^2 + (y-k)^2 =r^2#

#(x-3)^2 + (y-2)^2 =sqrt(117)^2#

#(x-3)^2 + (y-2)^2 =117#