Simplify the expression #(sin(a)cos(b)+cos(a)sin(b))/(cos(a)cos(b)-sin(a)sin(b)) * (cos(a)cos(b)+sin(a)sin(b))/(sin(a)cos(b)-cos(a)sin(b))#?
2 Answers
# tan(a+b) * cot(a-b) #
Explanation:
The expression is:
# E=(sin(a)cos(b)+cos(a)sin(b))/(cos(a)cos(b)-sin(a)sin(b)) * (cos(a)cos(b)+sin(a)sin(b))/(sin(a)cos(b)-cos(a)sin(b)) #
We can us the sine and cosine sum identities:
# sin(A+B)=sinAcosB+cosAsinB #
# sin(A-B)=sinAcosB-cosAsinB #
# cos(A+B)=cosAcosB-sinAsinB #
# cos(A-B)=cosAcosB+sinAsinB #
Applying these identities we can rewrite the expression as:
# E = (sin(a+b))/(cos(a+b)) * (cos(a-b))/(sin(a-b)) #
# \ \ \ = tan(a+b) * cot(a-b) #
Explanation:
To solve this, you need to know these formulae:
If you replace
Similarly, replacing
Now let's move on to the question.
Simplifying all the terms, we get