What is the Solution of the Differential Equation # (dP)/dt = kP - AP^2#?
3 Answers
# P(t) = ( kmue^(kt)) / (1 + muAe^(kt)) # where#mu = P_0/(k-AP_0) #
Explanation:
We have:
# (dP)/dt = kP - AP^2 #
# :. (dP)/dt = P(k-AP) #
# :. 1/(P(k-AP))(dP)/dt = 1 #
Which is a First Order Separable DE, so we can "separate the variables" to gett:
# int \ 1/(P(k-AP)) \ dP = int \ dt \ \ \ \ \ ..... (star) #
We can decompose the LHS integrand into Partial Fractions:
# 1/(P(k-AP)) -= a/P + b/(k-AP) #
# " " -= (a(k-AP) + bP)/(P(k-AP)) #
Leading to the identity:
# 1 -= a(k-AP) + bP #
To find thee coefficients
Put
#P = 0 \ \ => 1 = ak \ \ => a = 1/k#
Put#P = k/A => 1 = (bk)/A => b = A/k#
Hence we can re-write
# int \ (1/k)/P + (A/k)/(k-AP) \ dP = int \ dt #
# :. 1/k \ int \ 1/P + A/(k-AP) \ dP = int \ dt #
Which we can now integrate to get:
# :. 1/k {lnP+A(-1/A)ln(k-AP)} = t + C #
# :. 1/k {lnP - ln(k-AP)} = t + C #
# :. 1/k ln(P/(k-AP)) = t + C #
Using the initial condition
# :. 1/k ln(P_0/(k-AP_0)) = C #
And so the solution is:
# 1/k ln(P/(k-AP)) = t + 1/k ln(P_0/(k-AP_0)) #
# :. ln(P/(k-AP)) = kt + ln(P_0/(k-AP_0)) #
We can remove the logarithm by taking exponents of both sides:
# e^(ln(P/(k-AP))) = e^(kt + ln(P_0/(k-AP_0))) #
# :. P/(k-AP) = e^(kt)e^ln(P_0/(k-AP_0))) #
# " " = e^(kt)(P_0/(k-AP_0)) #
To simplify the expression, let
# P/(k-AP) = mu e^(kt) #
# :. P = mu (k-AP) e^(kt) #
# " " = muke^(kt) - muAPe^(kt) #
# :. P + muAPe^(kt) = muke^(kt) #
# :. P(1 + muAe^(kt)) = muke^(kt) #
# :. P = ( muke^(kt)) / (1 + muAe^(kt)) #
Hence:
# P(t) = ( kmue^(kt)) / (1 + muAe^(kt)) # where#mu = P_0/(k-AP_0) #
This is separable:
Partial Fraction decomp:
That's soooo ugly, there must be a better way :(
Explanation:
This is a separable differential equation so
or
or
and finally