Question #f837c

2 Answers
May 11, 2017

I tried this:

Explanation:

We can use the fact that:
#sectheta=1/costheta#
and
#tantheta=(sintheta)/(costheta)#

and write:

#(1-costheta)(1+costheta)1/cancel(cos^2theta)=sin^2theta/cancel(cos^2theta)#

multiply on the left to get:

#1-cos^2theta=sin^2theta# that it is true!

Remebering that:

#sin^2theta+cos^2theta=1#

May 15, 2017

#(1 - cos theta)(1 + cos theta) sec^2 theta = (1 - cos^2 theta)* 1/cos^2 theta#

note : #sec^2 theta = 1/cos^2 theta# and #1 -cos^2 theta = sin^2 theta#

# (1 - cos^2 theta)* 1/cos^2 theta= sin^2 theta/ cos^2 theta = tan^2 theta# --> proved