#x^3+6x^2+3x+10# ?
1 Answer
#x_1 = -2+root(3)(-10+sqrt(73))+root(3)(-10-sqrt(73))#
and related complex zeros as derived below...
Explanation:
Whether you want to find the zeros, factor or graph this cubic function, finding the zeros is probably the first step...
#f(x) = x^3+6x^2+3x+10#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 324-108-8640-2700+3240 = -7884#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=f(x)=x^3+6x^2+3x+10#
#=(x+2)^3-9(x+2)+20#
#=t^3-9t+20#
where
Cardano's method
We want to solve:
#t^3-9t+20=0#
Let
Then:
#u^3+v^3+3(uv-3)(u+v)+20=0#
Add the constraint
#u^3+27/u^3+20=0#
Multiply through by
#(u^3)^2+20(u^3)+27=0#
Use the quadratic formula to find:
#u^3=(-20+-sqrt((20)^2-4(1)(27)))/(2*1)#
#=(-20+-sqrt(400-108))/2#
#=(-20+-sqrt(292))/2#
#=(-20+-2sqrt(73))/2#
#=-10+-sqrt(73)#
Since this is Real and the derivation is symmetric in
#t_1=root(3)(-10+sqrt(73))+root(3)(-10-sqrt(73))#
and related Complex roots:
#t_2=omega root(3)(-10+sqrt(73))+omega^2 root(3)(-10-sqrt(73))#
#t_3=omega^2 root(3)(-10+sqrt(73))+omega root(3)(-10-sqrt(73))#
where
Now
#x_1 = -2+root(3)(-10+sqrt(73))+root(3)(-10-sqrt(73))#
#x_2 = -2+omega root(3)(-10+sqrt(73))+omega^2 root(3)(-10-sqrt(73))#
#x_3 = -2+omega^2 root(3)(-10+sqrt(73))+omega root(3)(-10-sqrt(73))#