Question #aaeae

1 Answer
May 26, 2017

a) 3x^2-8/(x^3)+1/(2sqrtx)3x28x3+12x
b) 40(2x-1)^340(2x1)3
c)(2x)/sinx-(x^2cosx)/sin^2x-cosx/sin^2x2xsinxx2cosxsin2xcosxsin2x

Answers are not simplified.

Explanation:

a) d/dx[x^3+4/x^2+x^(1/2)]=d/dx[x^3]+4d/dx[x^(-2)]+d/dx[x^(1/2)]ddx[x3+4x2+x12]=ddx[x3]+4ddx[x2]+ddx[x12]

Using the power rule:

=3x^2-8x^-3+1/2x^(-1/2)=3x28x3+12x12
=3x^2-8/(x^3)+1/(2sqrtx)=3x28x3+12x

b) d/dx[5(2x-1)^4]=5d/dx[(2x-1)^2]ddx[5(2x1)4]=5ddx[(2x1)2]

The chain rule states that:

dy/dx = dy/(du) (du)/dxdydx=dydududx

Let y=u^4y=u4 while u=2x-1u=2x1

Using the power rule:

(dy)/(du)=4g^3, \quad (du)/(dx)=2

5dy/dx=dy/(du) (du)/dx=40(2x-1)^3

c) d/dx[(x^2+4]/sinx]=d/dx[x^2/sinx]+4d/dx[1/sinx]

Solve for d/dx[x^2/sinx] first.

Using the product rule:

d/dx[f(x)*g(x)]=f(x)(dg)/dx+g(x)(df)/dx

d/dx[x^2*1/sinx]=d/dx[x^2]*1/sinx+d/dx[1/sinx]*x^2
=(2x)/sinx+d/dx[1/sinx]*x^2

Solve for d/dx[1/sinx]

Using the chain rule, let:
y=1/u while u=sinx
dy/(du)=-1/u^2

(du)/dx=cosx

dy/(du) (du)/dx=-cosx/u^2

Sub back u=sinx

dy/dx=-cosx/sin^2x

We can also use the reciprocal rule to solve for 1/sinx

d/dx[1/f(x)]=-(df)/dx*1/f^2(x)

Finally, d/dx[x^2/sinx]=(2x)/sinx-(x^2cosx)/sin^2x

Now solve for part 2
d/dx[1/sinx] has already been solved

d/dx[1/sinx]=-cosx/sin^2x

Now, sub back in.

d/dx[x^2/sinx]+4d/dx[1/sinx]=(2x)/sinx-(x^2cosx)/sin^2x-cosx/sin^2x