What are the roots, real or imaginary, of the quadratic equation #y=8x^2-14x+15#?

1 Answer
Jun 1, 2017

The roots are the values for #x#.

#x=(7+isqrt71)/8,##(7-isqrt71)/8#

Explanation:

You can use the quadratic formula.

#y=8x^2-14x+15# is a quadratic equation in standard form:

#y=ax^2+bx+c#,

where #a=8#, #b=-14#, and #c=15#.

The roots are the x-intercepts, which are the values for #x# when #y=0#, therefore, substitute #0# for #y#.

#0=8x^2-14x+15#

Quadratic Formula

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Insert the given values into the formula.

#x=(-(-14)+-sqrt((-14)^2-4*8*15))/(2*8)#

Simplify.

#x=(14+-sqrt(196-480))/(16)#

#x=(14+-sqrt(-284))/16#

Prime factorize the radicand.

#x=(14+-sqrt(2xx2xx71xxi))/16#

Simplify.

#x=(14+-2isqrt71)/16#

Factor out the common factor #2#.

#x=(7+-isqrt71)/8#

Solutions for #x#.

#x=(7+isqrt71)/8,##(7-isqrt71)/8#