If #x+y+z=6# and #x^2+y^2+z^2=14# and #x^3+y^3+z^3=36# then what are #x, y, z# ?

1 Answer
Jun 11, 2017

#{x, y, z} = {1, 2, 3}#

Explanation:

#1+2+3 = 6#

#1^2+2^2+3^2 = 1+4+9 = 14#

#1^3+2^3+3^3 = 1+8+27 = 36#

So #{x, y, z} = {1, 2, 3}# is a solution - actually #3! = 6# solutions since any order of #x, y, z# is possible.

#color(white)()#
Bonus

If there was not a simple solution that could be guessed, how would you solve a system of equations of this form?

Suppose:

#{ (x+y+z = a), (x^2+y^2+z^2 = b), (x^3+y^3+z^3 = c) :}#

Note that:

#a^2-b = (x+y+z)^2-(x^2+y^2+z^2)#

#color(white)(a^2-b) = 2(xy+yz+zx)#

#ab-c=(x+y+z)(x^2+y^2+z^2) - (x^3+y^3+z^3)#

#color(white)(ab-c)= xy^2+yz^2+zx^2+x^2y+y^2z+z^2x#

#a^3-c = (x+y+z)^3 - (x^3+y^3+z^3)#

#color(white)(a^3-c) = 3(xy^2+yz^2+zx^2+x^2y+y^2z+z^2x)+6xyz#

#color(white)(a^3-c) = 3(ab-c)+6xyz#

So we have:

#{ (x+y+z = a), (xy+yz+zx = (a^2-b)/2), (xyz = (a^3-3ab+2c)/6) :}#

Then #x, y, z# are the roots of:

#0 = (t-x)(t-y)(t-z)#

#color(white)(0) = t^3-(x+y+z)t^2+(xy+yz+zx)t-xyz#

#color(white)(0) = t^3-at^2+(a^2-b)/2t-(a^3-3ab+2c)/6#

Let's check that with the given example:

#a = 6, b=14, c=36#

#0 = t^3-color(blue)(6)t^2+(color(blue)(6)^2-color(blue)(14))/2t-(color(blue)(6)^3-3(color(blue)(6))(color(blue)(14))+2(color(blue)(36)))/6#

#color(white)(0) = t^3-6t^2+11t-6#

#color(white)(0) = (t-1)(t-2)(t-3)#