If #x+y+z=6# and #x^2+y^2+z^2=14# and #x^3+y^3+z^3=36# then what are #x, y, z# ?
1 Answer
Explanation:
#1+2+3 = 6#
#1^2+2^2+3^2 = 1+4+9 = 14#
#1^3+2^3+3^3 = 1+8+27 = 36#
So
Bonus
If there was not a simple solution that could be guessed, how would you solve a system of equations of this form?
Suppose:
#{ (x+y+z = a), (x^2+y^2+z^2 = b), (x^3+y^3+z^3 = c) :}#
Note that:
#a^2-b = (x+y+z)^2-(x^2+y^2+z^2)#
#color(white)(a^2-b) = 2(xy+yz+zx)#
#ab-c=(x+y+z)(x^2+y^2+z^2) - (x^3+y^3+z^3)#
#color(white)(ab-c)= xy^2+yz^2+zx^2+x^2y+y^2z+z^2x#
#a^3-c = (x+y+z)^3 - (x^3+y^3+z^3)#
#color(white)(a^3-c) = 3(xy^2+yz^2+zx^2+x^2y+y^2z+z^2x)+6xyz#
#color(white)(a^3-c) = 3(ab-c)+6xyz#
So we have:
#{ (x+y+z = a), (xy+yz+zx = (a^2-b)/2), (xyz = (a^3-3ab+2c)/6) :}#
Then
#0 = (t-x)(t-y)(t-z)#
#color(white)(0) = t^3-(x+y+z)t^2+(xy+yz+zx)t-xyz#
#color(white)(0) = t^3-at^2+(a^2-b)/2t-(a^3-3ab+2c)/6#
Let's check that with the given example:
#a = 6, b=14, c=36#
#0 = t^3-color(blue)(6)t^2+(color(blue)(6)^2-color(blue)(14))/2t-(color(blue)(6)^3-3(color(blue)(6))(color(blue)(14))+2(color(blue)(36)))/6#
#color(white)(0) = t^3-6t^2+11t-6#
#color(white)(0) = (t-1)(t-2)(t-3)#