Question #cbd96

2 Answers
Jun 19, 2017

Look at the steps shown in the description...

Explanation:

#(cot^2x)(1-cos^2x)=1-sin^2x#

So using the Left Hand Side:

LHS#=(cot^2x)(1-cos^2x)#

Expand the brackets:

#=cot^2x-cot^2x*cos^2x#

Using this: #cot^2x=1/(tan^2x)#

#=1/(tan^2x)-1/(tan^2x)cos^2x#

#=1/(tan^2x)-(cos^2x)/(tan^2x)#

Turn into single fraction:

#=(1-cos^2x)/tan^2x#

Using this: #1-cos^2x=sin^2x# (derived from #sin^2x+cos^2x=1#)

#=(sin^2x)/tan^2x#

Using this: #tan^2x=sin^2x/(cos^2x)#

#=(sin^2x)/(sin^2x/cos^2x)#

flip and multiply (dividing multiple fractions):

#=(sin^2x)*(cos^2x/sin^2x)#

#=(sin^2x*cos^2x)/sin^2x#

#=(cancel(sin^2x)*cos^2x)/cancel(sin^2x)#

#=cos^2x#

Using this: #cos^2x=1-sin^2x# (derived from #sin^2x+cos^2x=1#)

#=1-sin^2x#

Hence Left Hand Side (LHS) #=# Right Hand Side (RHS)

#=>(cot^2x)(1-cos^2x)=1-sin^2x#

Jun 19, 2017

See the proof below

Explanation:

We need

#cotx=cosx/sinx#

#sin^2x+cos^2x=1#

#1-cos^2x=sin^2x#

#cos^2x=1-sin^2x#

Therefore,

#LHS=(cot^2x)(1-cos^2x)#

#=cos^2x/cancel(sin^2x)*cancel(sin^2x)#

#=cos^2x#

#=1-sin^2x#

#=RHS#

#QED#