#(cot^2x)(1-cos^2x)=1-sin^2x#
So using the Left Hand Side:
LHS#=(cot^2x)(1-cos^2x)#
Expand the brackets:
#=cot^2x-cot^2x*cos^2x#
Using this: #cot^2x=1/(tan^2x)#
#=1/(tan^2x)-1/(tan^2x)cos^2x#
#=1/(tan^2x)-(cos^2x)/(tan^2x)#
Turn into single fraction:
#=(1-cos^2x)/tan^2x#
Using this: #1-cos^2x=sin^2x# (derived from #sin^2x+cos^2x=1#)
#=(sin^2x)/tan^2x#
Using this: #tan^2x=sin^2x/(cos^2x)#
#=(sin^2x)/(sin^2x/cos^2x)#
flip and multiply (dividing multiple fractions):
#=(sin^2x)*(cos^2x/sin^2x)#
#=(sin^2x*cos^2x)/sin^2x#
#=(cancel(sin^2x)*cos^2x)/cancel(sin^2x)#
#=cos^2x#
Using this: #cos^2x=1-sin^2x# (derived from #sin^2x+cos^2x=1#)
#=1-sin^2x#
Hence Left Hand Side (LHS) #=# Right Hand Side (RHS)
#=>(cot^2x)(1-cos^2x)=1-sin^2x#