What is the Laplace Transform of #tcosat+sinat#?

1 Answer
Jun 22, 2017

# ℒ \ {tcosat+sinat} = (s^2-a^2)/(s^2+a^2)^2 + a/(s^2+a^2) #

Which can also be written as:

# ℒ \ {tcosat+sinat} = (s^2-a^2 + as^2+a^3)/(s^2+a^2)^2 #

Explanation:

We seek:

# ℒ \ {tcosat+sinat} #

Firstly we note that the Laplace transformation has a linearity property, so that

# ℒ \ {tcosat+sinat} = ℒ \ {tcosat} + ℒ \ {sinat} #

We could just use a Laplace Transform lookup table and we would find:

# ℒ \ {tcosat} = (s^2-a^2)/(s^2+a^2)^2#
# ℒ \ {sinat} = a/(s^2+a^2)#

Thus:

# ℒ \ {tcosat+sinat} = (s^2-a^2)/(s^2+a^2)^2 + a/(s^2+a^2) #

# " " = (s^2-a^2)/(s^2+a^2)^2 + (a(s^2+a^2))/(s^2+a^2)^2 #

# " " = (s^2-a^2 + as^2+a^3)/(s^2+a^2)^2 #

I assume that the derivation of the above is required which we can easily gain using the rule for the Laplace Transformation of the derivative:

# ℒ \ (f''(t))=s^2 F(s)−s f(0)−f'(0) #

If we let:

# f(t) = sinat => f(0) = 0#

Differentiating we get:

# f'(t) = acosat => f'(0)=a#
# f''(t) = -a^2sinat #
# f''(t) = -a^2f(t) #

Taking Laplace transformations we get:

# ℒ \ {f''(t)} = -a^2ℒ \ {f(t)} #
# :. s^2 F(s)−s f(0)−f'(0) = -a^2F(s) #
# :. s^2 F(s)−0−a = -a^2F(s) #
# :. s^2 F(s)+a^2F(s) = a #
# :. (s^2 +a^2)F(s) = a #
# :. F(s) = a/(s^2 +a^2) #

Thus we have shown;

# ℒ \ {sinat} = a/(s^2+a^2)# QED

Similarly, Now suppose that we let

# f(t) = tcosat => f(0) = 0#

Then by the product rule:

# f'(t) = (t)(-asinat) + (1)(cosat) #
# " " = -atsinat+cosat => f'(0) = 1 #

Differentiating again we get:

# f''(t) = (-at)(acosat) + (-a)(sinat) -asinat#
# " " = -a^2tcosat -2asinat #
# " " = -a^2f(t) -2asinat => f''(0) = 0#

Taking Laplace transformations we get:

# ℒ \ {f''(t)} = -a^2ℒ \ {f(t)} - 2aℒ \ {sin at}#
# :. s^2 F(s)−s f(0)−f'(0) = -a^2F(s) - 2a a/(s^2+a^2)#

# :. s^2 F(s)−0−1 = -a^2F(s) - (2a^2)/(s^2+a^2)#

# :. s^2 F(s)+a^2F(s) = 1 - (2a^2)/(s^2+a^2)#

# :. (s^2 +a^2)F(s) = (s^2+a^2- 2a^2)/(s^2+a^2)#

# :. (s^2 +a^2)F(s) = (s^2-a^2)/(s^2+a^2)#

# :. F(s) = (s^2-a^2)/(s^2+a^2)^2#

Thus we have shown;

# ℒ \ {tcosat} = (s^2-a^2)/(s^2+a^2)^2# QED