How do you find the range of #y = (x+2)/(x^2-9)# ?
1 Answer
Let
Explanation:
Given:
#y = (x+2)/(x^2-9)#
Multiply both sides by
#yx^2-9y = x+2#
Subtract
#yx^2-x-(9y+2) = 0#
This is in the form:
#ax^2+bx+c = 0#
with
Its discriminant
#Delta = b^2-4ac#
#color(white)(Delta) = (color(blue)(-1))^2-4(color(blue)(y))(color(blue)(-(9y+2)))#
#color(white)(Delta) = 1+4y(9y+2)#
#color(white)(Delta) = 36y^2+8y+1#
#color(white)(Delta) = 4/9(81y^2+18y+9/4)#
#color(white)(Delta) = 4/9((9y)^2+2(9y)+1+5/4)#
#color(white)(Delta) = 4/9((9y+1)^2+5/4)#
...which is always positive for any real value of
So the range is the whole of
graph{(x+2)/(x^2-9) [-10, 10, -5, 5]}