What is #int e^(-st) cosbt e^(at) dt #?
2 Answers
See below
Explanation:
Using the de Moivre's identity
but
so taking the real part
Explanation:
Let:
# I = int \ e^(-st) \ cosbt \ e^(at) \ dt #
# \ \ = int \ e^((a-s)t) \ cosbt \ dt #
# \ \ = int \ e^(At) \ cosbt \ dt # , say where#A=a-s#
We can use integration by parts:
Let
# { (u,=cosbt, => (du)/dt,=-bsinbt), ((dv)/dt,=e^(At), => v,=1/Ae^(At) ) :}#
Then plugging into the IBP formula:
# int \ (u)((dv)/dt) \ dt = (u)(v) - int \ (v)((du)/dt) \ dt #
gives us
# int \ (cosbt)(e^(At)) \ dt = (cosbt)(1/Ae^(At)) - int \ (1/Ae^(At))(-bsinbt) \ dt #
# :. I = 1/A cosbt e^(At) + b/A int \ e^(At)sinbt \ dt #
At first it appears as if we have made no progress, as now the second integral is similar to
Let
# { (u,=sinbt, => (du)/dt,=bcosbt), ((dv)/dt,=e^(At), => v,=1/Ae^(At) ) :}#
Then plugging into the IBP formula, gives us:
# int \ (sinbt)(e^(At)) \ dt = (sinbt)(1/Ae^(At)) - int \ (1/Ae^(At))(bcosbt) \ dt #
# :. int \ e^(At)sinbt \ dt = 1/A e^(At)sinbt - b/A int \ e^(At)cosbt \ dt #
# :. int \ e^(At)sinbt \ dt = 1/A e^(At)sinbt - b/A I + c #
Inserting this result into [A] we get: