What is #int e^(-st) cosbt e^(at) dt #?

2 Answers
Jul 6, 2017

See below

Explanation:

Using the de Moivre's identity

#e^(ibt) = cos(bt)+i sin(bt)# we have

#int e^((a-s)t)cos(bt)dt + i int e^((a-s)t)sin(bt)dt = int e^((a-s+ib)t)dt =#

#1/(a-s-ib)e^((a-s+ib)t) + C = #

#= (a-s-ib)/((a-s)^2+b^2) e^((a-s)t)(cos bt+i sin bt)+C =#

but

#(a-s-ib)(cos bt+i sin bt)=#

#(a-s)cos(bt)+b sin(bt)+i((a-s)sin(bt)-bcos(bt))#

so taking the real part

#int e^((a-s)t)cos(bt)dt = e^((a-s)t)/((a-s)^2+b^2)((a-s)cos(bt)+b sin(bt))+C#

Jul 6, 2017

# int \ e^(-st) \ cosbt \ e^(at) \ dt = (e^((a-s)t){(a-s)cosbt + bsinbt})/((a-s)^2+b^2) + C #

Explanation:

Let:

# I = int \ e^(-st) \ cosbt \ e^(at) \ dt #
# \ \ = int \ e^((a-s)t) \ cosbt \ dt #
# \ \ = int \ e^(At) \ cosbt \ dt #, say where #A=a-s#

We can use integration by parts:

Let # { (u,=cosbt, => (du)/dt,=-bsinbt), ((dv)/dt,=e^(At), => v,=1/Ae^(At) ) :}#

Then plugging into the IBP formula:

# int \ (u)((dv)/dt) \ dt = (u)(v) - int \ (v)((du)/dt) \ dt #

gives us

# int \ (cosbt)(e^(At)) \ dt = (cosbt)(1/Ae^(At)) - int \ (1/Ae^(At))(-bsinbt) \ dt #

# :. I = 1/A cosbt e^(At) + b/A int \ e^(At)sinbt \ dt #

At first it appears as if we have made no progress, as now the second integral is similar to #I#, having exchanged #cosx# for #sinx#, but if we apply IBP a second time then the progress will become clear:

Let # { (u,=sinbt, => (du)/dt,=bcosbt), ((dv)/dt,=e^(At), => v,=1/Ae^(At) ) :}#

Then plugging into the IBP formula, gives us:

# int \ (sinbt)(e^(At)) \ dt = (sinbt)(1/Ae^(At)) - int \ (1/Ae^(At))(bcosbt) \ dt #

# :. int \ e^(At)sinbt \ dt = 1/A e^(At)sinbt - b/A int \ e^(At)cosbt \ dt #

# :. int \ e^(At)sinbt \ dt = 1/A e^(At)sinbt - b/A I + c #

Inserting this result into [A] we get:
# :. I = 1/A e^(At)cosbt + b/A {1/A e^(At)sinbt - b/A I + c} #

# :. AI = e^(At)cosbt + b/A e^(At)sinbt - b^2/A I + c #

# :. A^2I = Ae^(At)cosbt + be^(At)sinbt - b^2 I + cA #

# :. (A^2+b^2)I = Ae^(At)cosbt + be^(At)sinbt + cA #

# :. I = 1/(A^2+b^2) (Ae^(At)cosbt + be^(At)sinbt) + (cA)/(A^2+b^2) #

# :. I = (e^((a-s)t){(a-s)cosbt + bsinbt})/((a-s)^2+b^2) + C #