What is the general solution of the differential equation # (x^2+y^2)dx+(x^2-xy)dy = 0 #?

2 Answers
Jul 9, 2017

# y/x-2ln(y/x+1) = lnx + C #

Explanation:

We have:

# (x^2+y^2)dx+(x^2-xy)dy = 0 #

We can rearrange this Differential Equation as follows:

# dy/dx = - (x^2+y^2)/(x^2-xy) #
# " " = - ((1/x^2)(x^2+y^2))/((1/x^2)(x^2-xy)) #
# " " = - (1+(y/x)^2)/(1-y/x) #

So Let us try a substitution, Let:

# v = y/x => y=vx#

Then:

# dy/dx = v + x(dv)/dx #

And substituting into the above DE, to eliminate #y#:

# v + x(dv)/dx = - (1+v^2)/(1-v) #
# " " = (1+v^2)/(v-1) #

# :. x(dv)/dx = (1+v^2)/(v-1) - v#
# :. " " = {(1+v^2) - v(v-1)}/(v-1)#
# :. " " = {(1+v^2 - v^2+v)}/(v-1)#
# :. " " = (v+1)/(v-1)#

# :. (v-1)/(v+1) \ (dv)/dx = 1/x #

This is now a separable DIfferential Equation, and so "separating the variables" gives us:

# int \ (v-1)/(v+1) \ dv = \ int \ 1/x \ dx #

This is now a trivial integration problem, thus:

# int \ (v+1-2)/(v+1) \ dv = \ int \ 1/x \ dx #
# int \ 1-2/(v+1) \ dv = \ int \ 1/x \ dx #

# v-2ln(v+1) = lnx + C #

And restoring the substitution we get:

# y/x-2ln(y/x+1) = lnx + C #

Jul 9, 2017

See below.

Explanation:

Making the substitution

#y = lambda x# we have

#dy = lambda dx + x d lambda# then

#(x^2+y^2)dx+(x^2-xy)dy equiv x^2(1+lambda^2)dx+x^2(1-lambda)(lambda dx + x dlambda)# or assuming #x ne 0#

#(1+lambda^2+lambda(1-lambda))dx+x(1-lambda) dlambda = 0# or

#(1+lambda)dx+x(1-lambda)dlambda=0# This is a separable differential equation so

#((1-lambda)/(1+lambda))dlambda = -dx/x # and integrating both sides

#2log(lambda+1)-lambda = log x + C# or

#(lambda+1)^2/lambda = C_1 x# and solving for #lambda#

#lambda = y/x = 1/2(C_1 x pm sqrt(C_1 x) sqrt(C_1x-4))# then

#y = x /2(C_1 x pm sqrt(C_1 x) sqrt(C_1x-4))#