#(1/(cscx - cotx)) -(1/(cscx + cotx)) = 2/tanx#
Multiply the fractions on the left side by the conjugates of the denominators (which is the same as multiplying by one):
#"Left side:"#
#frac{1}{cscx-cotx} color(blue)(*frac{cscx+cotx}{cscx+cotx}) - frac{1}{cscx + cotx} color(blue)(*frac{cscx-cotx}{cscx-cotx})#
# "LS"= frac{(cscx+cotx) - (cscx - cotx)}{csc^2 x -cot^2 x}#
Using the pythagorean trig identity, we know that #csc^2x - cot^2x = 1#
#"LS" = frac{color(red)(cscx) + cotx color(red)(-cscx) + cotx}{color(blue)((csc^2x - cot^2x))}#
#"LS" = 2cotx#
#"LS" = 2/tanx#
#="Right side"#
#QED#