#sum_(n=1)^oo(n!)^2/((2n)!) # converges ?

1 Answer
Feb 26, 2018

Using Stirling's asymptotic approximation formula

#n! approx sqrt(2pin)(n/e)^n# we have

#a_n = (n!)^2/((2n)!) approx sqrt(pi n) 1/2^(2n) < pi n 2^(-2n)# which converges

so

#sum_(n=1)^oo a_k# converges.

NOTE

#n x^(-2n)= -1/2 x d/(dx)x^(-2n)#

and #sum_(k=0)^oo x^(-2k) = x^2/(x^2-1)# for #abs x > 1# then

#sum_(n=0)^oo n x^(-2n) = -1/2xd/(dx) 1/(1-x^2) =( x(1+x^2))/(x^2-1)^2#

and then

#sum_(k=1)^oo a_n le pi (2(1+2^2))/(2^2-1)#