How do you use long division to divide #(x^4-2x^3-4x^2+2x+3) -: (x^2+2x+1)#?

1 Answer
Sep 9, 2017

#(x^4-2x^3-4x^2+2x+3) -: (x^2+2x+1) = x^2-4x+3#, with no remainder.

Explanation:

Set up the long division like this:

#color(magenta)(x^2)+2x+1bar(|"  "color(magenta)(x^4)-2x^3-4x^2+2x+3)#

Divide #color(magenta)(x^4/x^2)#, giving #color(red)(x^2)#; put this quotient above the #x^4#:

#color(white)(x^2+2x+1bar(|"  "color(red)(x^2)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#

Multiply #color(red)(x^2) xx (x^2+2x+1)#, giving #color(blue)(x^4+2x^3+x^2)#; put this product below the #x^4-2x^3-4x^2#:

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(blue)(x^4+2x^3+color(white)(1)x^2))#

Subtract #(x^4-2x^3-4x^2)-(color(blue)(x^4+2x^3+x^2))#, giving #color(orange)(–4x^3-5x^2)#; draw a line under #color(blue)(x^4+2x^3+x^2)# and write this difference below the line:

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4"  ")color(orange)(-4x^3-5x^2)"          ")#

Copy the #color(green)(2x)# from the dividend down below this line:

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+color(green)(2x)+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2" "color(green)(+2x))#

Repeat this process twice, dividing the latest leading term below your line by the leading #x^2# from the divisor:

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-color(red)(4x))#
#color(magenta)(x^2)+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-color(magenta)(4x^3)-5x^2+2x)#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-color(red)(4x))#
#color(red)(x^2+2x+1)bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(blue)(-4x^3-8x^2-4x)))#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-4x)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+color(green)(3))#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|"        ")bar(color(white)(-4x^3+)color(orange)(3x^2+6x)+color(green)(3))#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-4x"  "+color(red)3)#
#color(magenta)(x^2)+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|"        ")bar(color(white)(-4x^3+)color(magenta)(3x^2)+6x+3)#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-4x"  "+color(red)(3))#
#color(red)(x^2+2x+1)bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|"        ")bar(color(white)(-4x^3+)3x^2+6x+3)#
#color(white)(x^2+2x+1|"        "bar(color(blue)("            "3x^2+6x+3)#

...

#color(white)(x^2+2x+1bar(|"  "color(black)(x^2-4x"  "+3)#
#x^2+2x+1bar(|"  "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|"  "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar("  "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar("     "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|"        ")bar(color(white)(-4x^3+)3x^2+6x+3)#
#color(white)(x^2+2x+1|"        "bar(color(black)("            "3x^2+6x+3)#
#color(white)(x^2+2x+1|"                       ")bar(color(white)(3x^2+6x+color(orange)0)#