How do you use long division to divide #(x^4-2x^3-4x^2+2x+3) -: (x^2+2x+1)#?
1 Answer
Explanation:
Set up the long division like this:
#color(magenta)(x^2)+2x+1bar(|" "color(magenta)(x^4)-2x^3-4x^2+2x+3)#
Divide
#color(white)(x^2+2x+1bar(|" "color(red)(x^2)#
#x^2+2x+1bar(|" "x^4-2x^3-4x^2+2x+3)#
Multiply
#color(white)(x^2+2x+1bar(|" "color(black)(x^2)#
#x^2+2x+1bar(|" "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|" "color(blue)(x^4+2x^3+color(white)(1)x^2))#
Subtract
#color(white)(x^2+2x+1bar(|" "color(black)(x^2)#
#x^2+2x+1bar(|" "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|" "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar(" "color(white)(x^4" ")color(orange)(-4x^3-5x^2)" ")#
Copy the
#color(white)(x^2+2x+1bar(|" "color(black)(x^2)#
#x^2+2x+1bar(|" "x^4-2x^3-4x^2+color(green)(2x)+3)#
#color(white)(x^2+2x+1bar(|" "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar(" "color(white)(x^4)-4x^3-5x^2" "color(green)(+2x))#
Repeat this process twice, dividing the latest leading term below your line by the leading
#color(white)(x^2+2x+1bar(|" "color(black)(x^2-color(red)(4x))#
#color(magenta)(x^2)+2x+1bar(|" "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|" "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar(" "color(white)(x^4)-color(magenta)(4x^3)-5x^2+2x)#
...
#color(white)(x^2+2x+1bar(|" "color(black)(x^2-color(red)(4x))#
#color(red)(x^2+2x+1)bar(|" "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|" "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar(" "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar(" "color(blue)(-4x^3-8x^2-4x)))#
...
#color(white)(x^2+2x+1bar(|" "color(black)(x^2-4x)#
#x^2+2x+1bar(|" "x^4-2x^3-4x^2+2x+color(green)(3))#
#color(white)(x^2+2x+1bar(|" "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar(" "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar(" "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|" ")bar(color(white)(-4x^3+)color(orange)(3x^2+6x)+color(green)(3))#
...
#color(white)(x^2+2x+1bar(|" "color(black)(x^2-4x" "+color(red)3)#
#color(magenta)(x^2)+2x+1bar(|" "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|" "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar(" "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar(" "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|" ")bar(color(white)(-4x^3+)color(magenta)(3x^2)+6x+3)#
...
#color(white)(x^2+2x+1bar(|" "color(black)(x^2-4x" "+color(red)(3))#
#color(red)(x^2+2x+1)bar(|" "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|" "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar(" "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar(" "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|" ")bar(color(white)(-4x^3+)3x^2+6x+3)#
#color(white)(x^2+2x+1|" "bar(color(blue)(" "3x^2+6x+3)#
...
#color(white)(x^2+2x+1bar(|" "color(black)(x^2-4x" "+3)#
#x^2+2x+1bar(|" "x^4-2x^3-4x^2+2x+3)#
#color(white)(x^2+2x+1bar(|" "color(black)(x^4+2x^3+color(white)(1)x^2))#
#color(white)(x^2+2x+1|)bar(" "color(white)(x^4)-4x^3-5x^2+2x)#
#color(white)(x^2+2x+1|bar(" "color(black)(-4x^3-8x^2-4x)))#
#color(white)(x^2+2x+1|" ")bar(color(white)(-4x^3+)3x^2+6x+3)#
#color(white)(x^2+2x+1|" "bar(color(black)(" "3x^2+6x+3)#
#color(white)(x^2+2x+1|" ")bar(color(white)(3x^2+6x+color(orange)0)#