#(x-1)^3+8 =0 -> (x-1)^3 =-8#
Let #lambda = x-1 -> x=lambda+1#
#:. lambda^3=-8#
#lambda =root3 (-8)#
#lambda = -2 -> x=-2+1 = -1# is a root of the original equation
and #(lambda +2)# is a factor of #(lambda^3+8)#
Now consider: #(lambda^3+8)/(lambda+2) = lambda^2-2lambda+4#
Hence, #lambda^2-2lambda+4=0# will yield the remaining roots.
Applying the quadratic formula
#lambda = (+2+-sqrt((-2)^2-4*1*4))/(2*1)#
#= (2+-sqrt(4-16))/2 = 1+-sqrt(-12)/2#
#=1+-(2sqrt(-3))/2 = 1+-sqrt3 i#
Since #x=lambda+1 -> x=2+-sqrt3 i# are the complex roots of the original equation.
#:. x= -1 or 2+-sqrt3 i# are the three roots of the cubic equation.