How do you expand #(r-t)^12# using the binomial theorem?

1 Answer
Feb 25, 2018

#r^12-12r^11t+66r^10t^2-220r^9t^3+495r^8t^4-792r^7t^5+924r^6t^t-792r^5t^7+495r^4t^8-220r^3t^9+66r^2t^10-12rt^11+t^12#

Explanation:

The binomial theorem tells us that:

#(a+b)^n = sum_(k=0)^n ((n),(k)) a^(n-k) b^k#

where #((n),(k)) = (n!)/((n-k)! k!)#

The binomial coefficients #((n),(k))# can be read from the appropriate row of Pascal's triangle.

In our example, with #n=12# we need the row beginning #1, 12#.

enter image source here

Putting #a=r# and #b=-t#, we also find that we need to alternate the signs of consecutive terms.

Hence we find:

#(r-t)^12#

#=r^12-12r^11t+66r^10t^2-220r^9t^3+495r^8t^4-792r^7t^5+924r^6t^t-792r^5t^7+495r^4t^8-220r^3t^9+66r^2t^10-12rt^11+t^12#