What are the roots of #x^3+5x^2-29x-129 = 0# ?

1 Answer
Sep 23, 2017

This has roots:

#x_n = 1/3(-5+8sqrt(7)cos(1/3cos^(-1)((241sqrt(7))/784)+(2npi)/3))" "n = 0, 1, 2#

Explanation:

#f(x) = x^3+5x^2-29x-129#

Discriminant

The discriminant #Delta# of a cubic polynomial in the form #ax^3+bx^2+cx+d# is given by the formula:

#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#

In our example, #a=1#, #b=5#, #c=-29# and #d=-129#, so we find:

#Delta = 21025+97556+64500-449307+336690 = 70464#

Since #Delta > 0# this cubic has #3# Real zeros.

Tschirnhaus transformation

To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.

#0=27f(x)=27(x^3+5x^2-29x-129)#

#=27x^3+(27*5)x^2-(27*29)x-(27*129)#

#=27x^3+135x^2-783x-3483#

#=(27x^3+135x^2+225x+125)-(1008x+1680)-1928#

#=(3x+5)^3-336(3x+5)-1928#

#=t^3-336t-1928#

where #t=(3x+5)#

Trigonometric substitution

Since this cubic has #3# real zeros, Cardano's method will encounter its casus irreducibilis, resulting in expressions in terms of irreducible cube roots of complex numbers.

So I prefer to express in terms of real trigonometric functions.

Let:

#t = k cos theta#

Then:

#t^3-336t-1928 = (kcos theta)^3-336(kcos theta)-1928#

Putting #k = sqrt(4/3*336) = sqrt(448) = 8sqrt(7)#

this becomes:

#t^3-336t-1928 = 896sqrt(7)(4cos^3 theta-3cos theta)-1928#

#color(white)(t^3-336t-1928) = 896sqrt(7)cos 3theta-1928#

which is #0# when:

#cos 3 theta = 1928/(896sqrt(7)) = 241/(112sqrt(7)) = (241sqrt(7))/784#

So:

#3 theta = +-cos^(-1)((241sqrt(7))/784)+2npi#

So:

#theta = +-1/3cos^(-1)((241sqrt(7))/784)+(2npi)/3#

Hence distinct roots:

#t_n = 8sqrt(7)cos(1/3cos^(-1)((241sqrt(7))/784)+(2npi)/3)" "n = 0, 1, 2#

So distinct roots of our original cubic:

#x_n = 1/3(-5+8sqrt(7)cos(1/3cos^(-1)((241sqrt(7))/784)+(2npi)/3))" "n = 0, 1, 2#