What are the roots of #x^3+5x^2-29x-129 = 0# ?
1 Answer
This has roots:
#x_n = 1/3(-5+8sqrt(7)cos(1/3cos^(-1)((241sqrt(7))/784)+(2npi)/3))" "n = 0, 1, 2#
Explanation:
#f(x) = x^3+5x^2-29x-129#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 21025+97556+64500-449307+336690 = 70464#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27(x^3+5x^2-29x-129)#
#=27x^3+(27*5)x^2-(27*29)x-(27*129)#
#=27x^3+135x^2-783x-3483#
#=(27x^3+135x^2+225x+125)-(1008x+1680)-1928#
#=(3x+5)^3-336(3x+5)-1928#
#=t^3-336t-1928#
where
Trigonometric substitution
Since this cubic has
So I prefer to express in terms of real trigonometric functions.
Let:
#t = k cos theta#
Then:
#t^3-336t-1928 = (kcos theta)^3-336(kcos theta)-1928#
Putting
this becomes:
#t^3-336t-1928 = 896sqrt(7)(4cos^3 theta-3cos theta)-1928#
#color(white)(t^3-336t-1928) = 896sqrt(7)cos 3theta-1928#
which is
#cos 3 theta = 1928/(896sqrt(7)) = 241/(112sqrt(7)) = (241sqrt(7))/784#
So:
#3 theta = +-cos^(-1)((241sqrt(7))/784)+2npi#
So:
#theta = +-1/3cos^(-1)((241sqrt(7))/784)+(2npi)/3#
Hence distinct roots:
#t_n = 8sqrt(7)cos(1/3cos^(-1)((241sqrt(7))/784)+(2npi)/3)" "n = 0, 1, 2#
So distinct roots of our original cubic:
#x_n = 1/3(-5+8sqrt(7)cos(1/3cos^(-1)((241sqrt(7))/784)+(2npi)/3))" "n = 0, 1, 2#