Show that # I_n = -1/n \ cosx \ sin^(n-1)x+(n-1)/n \ I_(n-2) # where #I_n=int \ sin^nx \ dx #, and #n ge 2#?
1 Answer
We want to show that:
# I_n = -1/n \ cosx \ sin^(n-1)x+(n-1)/n \ I_(n-2) #
Where
We can write the integral as:
# I_n=int \ (sinx)(sin^(n-1)x) \ dx # provided#n ge 2#
We can use integration by parts:
Let
# { (u,=sin^(n-1)x, => (du)/dx,=(n-1)sin^(n-2)xcosx), ((dv)/dx,=sinx, => v,=-cosx ) :}#
Then plugging into the IBP formula:
# int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx #
gives us:
# int \ (sin^(n-1)x)(sinx) \ dx = (sin^(n-1)x)(-cosx) - int \ (-cosx)((n-1)sin^(n-2)xcosx) \ dx #
# :. I_n = -cosx \ sin^(n-1)x + (n-1)int \ cos^2x \ sin^(n-2)x \ dx #
Using the identity,
# I_n = -cosx \ sin^(n-1)x + (n-1)int \ (1-sin^2x) \ sin^(n-2)x \ dx #
# \ \ \ = -cosx \ sin^(n-1)x + (n-1)int \ sin^(n-2)x - sin^(n)x \ dx #
# \ \ \ = -cosx \ sin^(n-1)x + (n-1)(I_(n-2) - I_n) #
# \ \ \ = -cosx \ sin^(n-1)x + (n-1)I_(n-2) - (n-1)I_n #
# I_n + (n-1) I_n = -cossx \ sin^(n-1)x + (n-1)I_(n-2) #
# :. nI_n = -cosx \ sin^(n-1)x + (n-1)I_(n-2) #
# :. I_n = -1/ncossx \ sin^(n-1)x + (n-1)/nI_(n-2) # QED