What are the roots of #((1+iz)/z)^3 = 8i# ?

2 Answers
Dec 19, 2017

The solutions are #S={1/sqrt3;-1/sqrt3 ;i/3 }#

Explanation:

Reminder : The Euler's Identity

#e^(itheta)=costheta+isintheta#

#e^(ipi/2)=cos(pi/2)+isin(pi/2)=0+i#

Therefore,

#((1+iz)/z)^3=8i=8e^(i(pi/2+2kpi))#, #AA k in {0,1,2}#

Taking the cube roots

#((1+iz)/z)=2e^(i(pi/6+2/3kpi))#

#1+iz=2ze^(i(pi/6+2/3kpi))#

#z(2e^(i(pi/6+2/3kpi))-i)=1#

#z=1/(2e^(i(pi/6+2/3kpi))-i)#

When #k=0#

#z_0=1/(2(cos(pi/6)+isin(pi/6))-i)#

#z_0=1/((sqrt3+i-i))=1/sqrt3#

#=(1-i(sqrt3-1))/(5-2sqrt3)#

When #k=1#

#z_1=1/(2(cos(pi/6+2/3pi)+isin(pi/6+2/3pi))-i)#

#z_1=1/((-sqrt3+i-i))=-1/sqrt3#

When #k=2#

#z_1=1/(2(cos(pi/6+4/3pi)+isin(pi/6+4/3pi))-i)#

#=1/(2(cos(3/2pi)+isin(3/2pi)-i)#

#=1/(2(0-i)-i)=1/(-3i)=i/3#

Dec 19, 2017

The roots are #1/3i# and #+-sqrt(3)/3#

Explanation:

Given:

#((1+iz)/z)^3 = 8i#

Since #(-i)^3 = i# and #2^3=8# this simplifies to:

#(1/z+i)^3 = (-2i)^3#

Hence:

#1/z+i = omega^k (-2i)" "# for #k = 0, 1, 2#

where #omega = -1/2+sqrt(3)/2i# is the primitive complex cube root of #1#.

Note that #omega^2 = bar(omega) = -1/2-sqrt(3)/2i#

So the three roots #z_k# are:

#z_k = 1/(omega^k(-2i)-i)" "k = 0, 1, 2#

Simplifying each in turn, we have:

#z_0 = 1/(-2i-i) = 1/(-3i) = 1/3i#

#z_1 = 1/((-1/2+sqrt(3)/2i)(-2i)-i) = 1/((color(red)(cancel(color(black)(i)))-sqrt(3))-color(red)(cancel(color(black)(i)))) = -1/sqrt(3) = -sqrt(3)/3#

#z_2 = 1/((-1/2-sqrt(3)/2i)(-2i)-i) = 1/((color(red)(cancel(color(black)(i)))+sqrt(3))-color(red)(cancel(color(black)(i)))) = 1/sqrt(3) = sqrt(3)/3#