Question #96f87

1 Answer
Oct 2, 2017

h = 67.6 \ m

Explanation:

For Physics or Mechanics you should learn the "suvat" equations for motion under constant acceleration:

{: (v=u+at, " where ", s="displacement "(m)), (s=ut+1/2at^2, , u="initial speed "(ms^-1)), (s=1/2(u+v)t, , v="final speed "(ms^-1)), (v^2=u^2+2as, , a="acceleration "(ms^-2)), (s=vt-1/2at^2, , t="time "(s)) :}

enter image source here

Let us define the following variables:

{ (theta=30^o, "= Angle of projection to the horizontal", ""^o), (U, "= Speed at moment hammer leaves roof", ms^-1), (h, "= Height of the roof lip", m), (T, "= Time for hammer to hit ground after leaving roof", s) :}

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

INITIAL MOTION - SLIDING FROM ROOFTOP

enter image source here

We can apply the suvat equations parallel to the roof to find the velocity of the hammer just before it leaves the rooftop.

{ (s=,2.8,m), (u=,0,ms^-1), (v=,U,ms^-1), (a=,1.3,ms^-2), (t=,"Not Required",s) :}

Applying v^2=u^2+2as we have:

U^2 = 0 + 2(1.3)(2.8)
\ \ \ \ \ = 7.28

:. U = sqrt(7.28)

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

SECONDARY MOTION - FALLING UNDER GRAVITY

Horizontal Motion

The projectile will move under constant speed (NB we can still use "suvat" equation with a=0). We must resolve the initial speed into its horizontal component, giving us Ucostheta. We know it travels 3.2m in time T

{ (s=,3.2,m), (u=,Ucostheta ,ms^-1), (v=,"Not Required",ms^-1), (a=,0,ms^-2), (t=,T,s) :}

Applying s=ut+1/2at^2 we have:

3.2 = Ucostheta T + 0

:. 3.2 = sqrt(7.28)cos30^o T

:. 3.2 = sqrt(7.28)sqrt(3)/2 T

:. T = 6.4 /( sqrt(7.28)sqrt(3) )

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Vertical Motion

The projectile travels under constant acceleration due to gravity.

We must resolve the initial speed into its vertical component giving us Usintheta. We know it travels hm in time T

{ (s=,h,m), (u=,Usintheta ,ms^-1), (v=,"Not Required",ms^-1), (a=,g,ms^-2), (t=,T,s) :}

Applying s=ut+1/2at^2 we have:

h = (Usintheta)(6.4 / ( sqrt(21.84) )) +1/2(g)(6.4 / ( sqrt(21.84) ))^2
\ \ = (sqrt(7.28))(1/2)(6.4 / ( sqrt(7.28)sqrt(3) )) +1/2(g)(6.4 / ( sqrt(7.28)sqrt(3) ))^2
\ \ = (3.2 / ( sqrt(7.28)sqrt(3) )) +1/2(g)( 40.96 /3 )

\ \ = (3.2 / ( sqrt(7.28)sqrt(3) )) +( 40.96 /6 )g

And, if we take g=9.8 we have:

h = 67.586 ...
\ \ = 67.6 \ m