Question #d811b

1 Answer

#pi*log2#

Explanation:

1) I called initial integral as #I#.

2) I used #x=tany# and #dx=(secy)^2*dy# transforms.

3) I used #tany+coty=2/(sin2y)# identity.

4) I called second integral as #J#.

5) I used #z=2y# and #dz=2dy# transformations in #J#.

6) I used symmetry of the sine function about #pi/2#:

#int_0^(pi) f(sinz)*dz#=#int_0^((pi)/2) 2f(sinz)*dz#

7) I used #int_0^((pi)/2) f(z)*dz#=#int_0^((pi)/2) f((pi)/2-z)*dz# identity.

8) I collected 2 #J#'s.

9) I used #logm+logn=log(m*n)# and #log(a/b)=loga-logb# identities.

10) I found value of #J#.

11) I found value of #I#.

#I#=#int_0^oo log(x+1/x)*dx/(1+x^2)#

After using #x=tany# and #dx=(secy)^2*dy# transforms,

#I#=#int_0^(pi/2) log(tany+coty)*dy#

=#int_0^(pi/2) log(2/(sin2y))*dy#

=#(pi)/2*log2#-#int_0^(pi/2) log(sin2y)*dy#

I called new integral as #J#,

#J#=#int_0^(pi/2) log(sin2y)*dy#

After using #z=2y# and #dz=2dy# transformations,

#J#=#int_0^pi 1/2*log(sinz)*dz#

After using symmetry of the sine function about #pi/2#,

#J#=#int_0^(pi/2) 1/2*2*log(sinz)*dz#

=#int_0^(pi/2) log(sinz)*dz#

=#int_0^(pi/2) log[sin(pi/2-z)]*dz#

=#int_0^(pi/2) log(cosz)*dz#

After collecting 2 integrals,

#2J#=#int_0^(pi/2) log(sinz)*dz#+#int_0^(pi/2) log(cosz)*dz#

=#int_0^(pi/2) log(sinz*cosz)*dz#

=#int_0^(pi/2) log((sin2z)/2)*dz#

=#int_0^(pi/2) log(sin2z)*dz#-#(pi)/2*log2#

=#J#-#(pi)/2*log2#

Hence #J=-(pi)/2*log2#

Thus,

#I#=#int_0^oo log(x+1/x)*dx/(1+x^2)#

=#(pi)/2*log2-J#

=#(pi)/2*log2-(-(pi)/2*log2)#

=#pi*log2#