Question #e2075

1 Answer
Oct 5, 2017

Point B has the coordinates #(-(7/3),(-10/3))#

enter image source here

Explanation:

Eqn of line AB is #x—y=-1# & slope of AB#=1#
Eqn of line AD is #7x-y=5# & slope of AD #=7#

Solving Eqn AB & AD, we get point A.
#6x=6# or #x=1# & #y=2#
Point A #(1,2)#

E is the midpoint of A & C
Point E #(-1,-2)#

#(x+1)/2=-1#
#x=-3#
#(y+2)/2=-2#
#y=-6#
Point C#(-3,-6)#

Slope of BC is same as slope of AD #=7#
Eqn of line BC is #y+6=7(x+3)#
#y-7x=5#
Solving line Equations AB & BC, we get point B.
Line AB #x-y=-1#
Line BC #-7x+1=5#
#:.-6x=14# or #x=-(7/3)# & #y=-(10/3)#
Point B #(-(7/3),-(10/3)#

Slope of CD is same as slope of AB #=1#
Eqn of line CD is #(y+6)=(x+3)#
#y-x=-3#
Solving Eans AD & CD, we get point D
Line AD #7x-y=5#
Line CD #y-x=-3#
#:.6x=2# or #x=1/3# & #y=-(8/3)#
Point D#(1/3,-(8/3))#