Question #a5024

2 Answers
Oct 26, 2017

#3200#

Explanation:

According to the law of exponential grow

#{(y_1 = c e^(alpha t_1)),(y_2=c e^(alpha t_2)):}#

dividing side by side

#y_2/y_1 = e^(alpha(t_2-t_1))# or

#log(y_2/y_1) = alpha(t_2-t_1)# and then

#alpha = log(y_2/y_1)/(t_2-t_1)#

and substituting into #y_1 = c e^(alpha t_1)# we get

#y_1 = c (y_2/y_1)^(t_1/(t:2-t_1))# and then

#c = y_1 (y_2/y_1)^(t_1/(t_1 - t_2))# and now calling

#(t_1, y_1) = (2,100)#
#(t_2,y_2) = (5,800)#
#t_3 = 7#

then

#alpha = (log 8)/3 = 0.693147#
#c = 25#

#y_3 = 0.693147 e^(25 t_3) = 3200#

Oct 26, 2017

#3200#

Explanation:

#y(t) = a * e^(kt)#

value at time #t# = start value * e^(rate of growth * time)

value after #2#h = #100#
#a = 100#

#5# hours - #2# hours = #3# hours
#t = 3#

value after #5# hours = #800#
#y(3) = 800#

substituting these values into the equation:

#800 = 100 * e^(3k)#

#e^(3k) = 800/100 = 8#

#e^(3k) = 8#

take #ln# of both sides:

#ln(e^(3k)) = ln(8)#

#ln(e^x) = x -> ln(e^(3k)) = 3k#

#3k = ln8#

#k = ln8/3#

after #7# hours: #y(t) = 100 * e^(5k)#

#7#h-#2#h=#5#h

#5k = 5ln8/3#

#y(t) = 100 *e^((5ln8)/3)#

#y(5) = 100 * e^((5ln8)/3) = 100*31.9999...#

# = 3200# (nearest 1)

the number of bacteria is #3200# after 7 hours.