What are the solutions of the system of equations: #x^2+y-5=0#, #x+y^2-5=0# ?

1 Answer
Feb 13, 2018

#(1/2+sqrt(17)/2, 1/2-sqrt(17)/2)#

#(1/2-sqrt(17)/2, 1/2+sqrt(17)/2)#

#(-1/2+sqrt(21)/2, -1/2+sqrt(21)/2)#

#(-1/2-sqrt(21)/2, -1/2-sqrt(21)/2)#

Explanation:

Given:

#{ (x^2+y-5=0), (x+y^2-5=0) :}#

From the first equation, we can deduce that:

#y = 5-x^2#

Then substituting for #y# in the second equation, we get:

#0 = x+(5-x^2)^2-5#

#color(white)(0) = x^4-10x^2+x+20#

#color(white)(0) = (x^2-ax+b)(x^2+ax+c)#

#color(white)(0) = x^4+(b+c-a^2)x^2+a(b-c)x+bc#

Equating coefficients, we find:

#{ (b+c = a^2-10), (b-c=1/a), (bc=20) :}#

By inspection, this has solution:

#a = 1#, #b = -4#, #c = -5#

So:

#x^4-10x^2+x+20 = (x^2-x-4)(x^2+x-5)#

Using the quadratic formula, this has roots:

#x = 1/2+-sqrt(17)/2#

#x = -1/2+-sqrt(21)/2#

When #x=1/2+sqrt(17)/2# we find:

#y = 5-x^2#

#color(white)(y) = 5-(1/2+sqrt(17)/2)^2#

#color(white)(y) = 5-(1/4+sqrt(17)/2+17/4)#

#color(white)(y) = 1/2-sqrt(17)/2#

By symmetry we can deduce points of intersection:

#(1/2+sqrt(17)/2, 1/2-sqrt(17)/2)#

#(1/2-sqrt(17)/2, 1/2+sqrt(17)/2)#

When #x=-1/2+sqrt(21)/2# we find:

#y = 5-x^2#

#color(white)(y) = 5-(-1/2+sqrt(21)/2)^2#

#color(white)(y) = 5-(1/2-sqrt(21)/2+21/4)#

#color(white)(y) = -1/2+sqrt(21)/2#

By symmetry we can deduce points of intersection:

#(-1/2+sqrt(21)/2, -1/2+sqrt(21)/2)#

#(-1/2-sqrt(21)/2, -1/2-sqrt(21)/2)#

graph{(x^2+y-5)(x+y^2-5) = 0 [-10, 10, -4.24, 5.76]}