Solve the Differential Equation # (1+x^2)y'+4xy=(1+x^2)^-2 #?

1 Answer
Nov 9, 2017

# y = arctan(x)/(1+x^2)^2 + C/(1+x^2)^2 #

Explanation:

We have:

# (1+x^2)y'+4xy=(1+x^2)^-2 # ..... [A]

We can rearrange [A] as follows:

# (1+x^2)y'+4xy = 1/(1+x^2)^2 #

# dy/dx + (4x)/(1+x^2)y = 1/(1+x^2)^3 # ..... [B]

We can use an integrating factor when we have a First Order Linear non-homogeneous Ordinary Differential Equation of the form;

# dy/dx + P(x)y=Q(x) #

So we form an Integrating Factor;

# I = e^(int P(x) dx) #
# \ \ = exp(int \ (4x)/(1+x^2) \ dx) #
# \ \ = exp(2 \ int \ (2x)/(1+x^2) \ dx) #
# \ \ = exp(2 \ ln(1+x^2)) #
# \ \ = exp(ln(1+x^2)^2) #
# \ \ = (1+x^2)^2 #

And if we multiply the DE [B] by this Integrating Factor, #I#, we will have a perfect product differential;

# (1+x^2)^2 \ dy/dx + (4x(1+x^2)^2)/(1+x^2)y = (1+x^2)^2 /(1+x^2)^3#
# :. d/dx( (1+x^2)^2 \ y ) = 1 /(1+x^2)#

Which we can directly integrate to get:

# (1+x^2)^2 \ y = int \ 1 /(1+x^2) \ dx #

The RHS is a standard integral, so integrating we get:

# (1+x^2)^2 \ y = arctan(x) + C #

Leading to the General Solution:

# y = arctan(x)/(1+x^2)^2 + C/(1+x^2)^2 #