What are the cube roots of #4+4sqrt(3)i# ?
1 Answer
The three cube roots of
#2(cos(pi/9)+isin(pi/9))#
#2(cos((7pi)/9)+isin((7pi)/9))#
#2(cos((13pi)/9)+isin((13pi)/9))#
Explanation:
Note that:
#4+4sqrt(3)i = 8(1/2+sqrt(3)/2i) = 8(cos(pi/3)+i sin(pi/3))#
By de Moivre's formula:
#(cos theta + i sin theta)^n = cos n theta + i sin n theta#
Hence we find:
#(2(cos(pi/9) + i sin(pi/9)))^3 = 8(cos(pi/3)+i sin(pi/3))#
So one of the cube roots is:
#2(cos(pi/9) + i sin (pi/9))#
We can find the other two by multiplying by:
#omega = cos((2pi)/3) + i sin((2pi)/3)#
the primitive complex cube root of
So the other two cube roots are:
#2(cos(pi/9) + i sin (pi/9))(cos((2pi)/3) + i sin((2pi)/3))#
#= 2(cos((7pi)/9)+isin((7pi)/9))#
#2(cos(pi/9) + i sin (pi/9))(cos((4pi)/3) + i sin((4pi)/3))#
#= 2(cos((13pi)/9)+isin((13pi)/9))#