What are the last 3 digits of 7^2175 ?
1 Answer
Nov 19, 2017
Explanation:
First let's look at how the last digit changes with ascending powers of
1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3,...
In particular note that:
7^4 -= 1" " modulo10
We find:
7^4 = 2401 -= 1" " modulo100
So now let's look at powers of
1, 401, 801, 201, 601, 1
So:
7^20 -= 401^5 -= 1" " modulo1000
So:
7^2175 = 7^(108*20+15) -= 7^15" " modulo1000
-= 401^3 * 7^3 -= 201 * 343 -= 943" " modulo1000