What are the last 3 digits of 7^2175 ?

1 Answer
Nov 19, 2017

943

Explanation:

First let's look at how the last digit changes with ascending powers of 7. That is effectively modulo 10 arithmetic and we find successive powers of 7 starting from 0 modulo 10 are:

1, 7, 9, 3, 1, 7, 9, 3, 1, 7, 9, 3,...

In particular note that:

7^4 -= 1" " modulo 10

We find:

7^4 = 2401 -= 1" " modulo 100

So now let's look at powers of 401 modulo 1000:

1, 401, 801, 201, 601, 1

So:

7^20 -= 401^5 -= 1" " modulo 1000

So:

7^2175 = 7^(108*20+15) -= 7^15" " modulo 1000

-= 401^3 * 7^3 -= 201 * 343 -= 943" " modulo 1000