How do you solve #x^3+x^2+x-2 = 0# ?
2 Answers
Are you sure you entered the problem correctly?
Explanation:
It does not factor beyond this. Are you sure you entered the problem correctly?
This cubic has real root:
#x = 1/3(-1+root(3)((61+3sqrt(417))/2)+root(3)((61-3sqrt(417))/2))#
and related complex roots...
Explanation:
Given:
#f(x) = x^3+x^2+x-2#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 1-4+8-108-36 = -139#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3+27x^2+27x-54#
#=(3x+1)^3+6(3x+1)-61#
#=t^3+6t-61#
where
Cardano's method
We want to solve:
#t^3+6t-61=0#
Let
Then:
#u^3+v^3+3(uv+2)(u+v)-61=0#
Add the constraint
#u^3-8/u^3-61=0#
Multiply through by
#(u^3)^2-61(u^3)-8=0#
Use the quadratic formula to find:
#u^3=(61+-sqrt((-61)^2-4(1)(-8)))/(2*1)#
#=(61+-sqrt(3721+32))/2#
#=(61+-sqrt(3753))/2#
#=(61+-3sqrt(417))/2#
Since this is Real and the derivation is symmetric in
#t_1=root(3)((61+3sqrt(417))/2)+root(3)((61-3sqrt(417))/2)#
and related Complex roots:
#t_2=omega root(3)((61+3sqrt(417))/2)+omega^2 root(3)((61-3sqrt(417))/2)#
#t_3=omega^2 root(3)((61+3sqrt(417))/2)+omega root(3)((61-3sqrt(417))/2)#
where
Now
#x_1 = 1/3(-1+root(3)((61+3sqrt(417))/2)+root(3)((61-3sqrt(417))/2))#
#x_2 = 1/3(-1+omega root(3)((61+3sqrt(417))/2)+omega^2 root(3)((61-3sqrt(417))/2))#
#x_3 = 1/3(-1+omega^2 root(3)((61+3sqrt(417))/2)+omega root(3)((61-3sqrt(417))/2))#
If you like, you can use these values to give a factorisation:
#0 = x^3+x^2+x-2 = (x-x_1)(x-x_2)(x-x_3)#