#lim_(x->0)1/x - 1/(e^x - 1) = # ?

2 Answers
Dec 23, 2017

#Lim_(xrarr0^+)(1/x-1/(e^x-1))=1/2#

Explanation:

#Lim_(xrarr0^+)(1/x-1/(e^x-1))#

#Lim_(xrarr0^+)((e^x-1)-x)/(x(e^x-1))=0/0#

Using L'Hopitals rule:

#Lim_(xrarr0^+)(e^x-1)/((e^x-1)+xe^x)=0/0#

Again

#Lim_(xrarr0^+)(e^x)/(e^x+xe^x+e^x)=Lim_(xrarr0^+)cancel(e^x)/(cancel(e^x)(1+x+1)#

#Lim_(xrarr0^+)(1)/(x+2)=1/2#

Dec 23, 2017

#1/2#

Explanation:

#1/x - 1/(e^x - 1) = (e^x - x-1)/((e^x-1) x)#

This is a limit of type l'Hopital #0/0# so calling

#u(x) = e^x - x-1#
#v(x)=(e^x-1) x#

we have

#(d^2u)/(dx^2) =e^x#
#(d^2v)/(dx^2) =(2 +x)e^x# and then

#lim_(x->0)1/x - 1/(e^x - 1) = lim_(x->0)((d^2u)/(dx^2))/((d^2v)/(dx^2))=lim_(x->0)e^x/((2+x)e^x) = 1/2#