Question #55088

1 Answer
Feb 20, 2018

Assumption: the calculation cycle is monthly (not stated!)

#14%# per year compounded monthly

Explanation:

Let the principal sum be #P#
Let the numerator of the percent be #x#

2 years #->P(1+x/(12xx100))^(2xx12)=1440" "....Equation(1)#

3 years #->P(1+x/(12xx100))^(3xx12)=1656" "....Equation(2)#

The most straigh-forward way to 'get rid' of one of the unknowns (#P#) is by division. It also simplifies the brackets to some extent.

#Eqn(2)-:Eqn(1)#

#[cancel(P)(1+x/(12xx100))^(3xx12)]/[cancel(P)(1+x/(12xx100))^(2xx12)]=1656/1440#

#(1+x/(12xx100))^(12) =1656/1440#

#((1200+x)/1200)^(12) =1656/1440#

Take logs of both sides. I choose #log_10#

Note that #log(a^b)=b log(a)#
and that #log(a/b)=log(a)-log(b)#

#log(((1200+x)/1200)^(12))=log(23/20) #

#12log(1200+x)-12log(1200)color(white)("d")=color(white)("d")log(23)-log(20)#

#log(1200+x)=(log(23)-log(20)+12log(1200))/12#

#1200+x=log^(-1)[(log(23)-log(20)+12log(1200))/12] #

#x=log^(-1)[(log(23)-log(20)+12log(1200))/12] -1200#

#x~~14.0579....# by calculator

This will have rounding errors in it so lets call it #x=14#