Question #06d81

1 Answer
Dec 25, 2017

#a. 2mol"C"Cl_4#
#b. 308.0g"C"Cl_4#
#c. 1.2xx10^24"C"Cl_4 " molecules"#

Explanation:

  1. Given the #etaCl_2#, this value can be the basis to find the #eta"C"Cl_4# through molar conversion. Refer to the provided balanced equation for the mole ratio.
    #=4.0cancel(molCl_2)xx(1mol"C"Cl_4)/(2cancel(molCl_2))#
    #=2mol"C"Cl_4#
  2. Find the molar mass of the involved compound required in the problem. Relative atomic masses of the elements composing #"C"Cl_4# are obtainable from the periodic table; i.e.,
    #"Molar mass "C"Cl_4=(154 g)/(mol)#
  3. Then, find #m"C"Cl_4"# that can be computed as
    #=2cancel(mol"C"Cl_4)xx(154g"C"Cl_4)/(1cancel(mol"C"Cl_4))#
    #=308g"C"Cl_4#
  4. Lastly, find the number of molecules of #"C"Cl_4#. Knowing that the value in #eta"C"Cl_4=2mol# and from the relationship that #1mol"C"Cl_4=6.02xx10^23"C"Cl_4" molecules"#, the number of molecules can be computed as follows:
    #=2cancel(mol"C"Cl_4)xx(6.02xx10^23"C"Cl_4" molecules")/(1cancel(mol"C"Cl_4))#
    #=12.04xx10^23"C"Cl_4" molecules"#
  5. Make sure to express the resulting value in the standard scientific notation. Knowing the fact that moving the decimal point to the left corresponds to a positive exponent (from the mnemonics LIP-Left Is Positive); that is,
    #=1.2xx10^24"C"Cl_4" molecules"#