Let #f(x)=1/(a+be^(x))# and note that we can multiply the numerator (top) and denominator (bottom) of this fraction by #e^(-x)# to write #f(x)=(e^{-x})/(ae^{-x}+b)#.
For the integral #int (e^{-x})/(ae^{-x}+b)dx#, use the substitution #u=ae^{-x}+b#, #du=-ae^{-x}dx#, and #e^{-x}dx=-1/a du# to obtain
#int (e^{-x})/(ae^{-x}+b)dx=-1/a int\ 1/u du#
#=-1/a ln|u|+C=-(ln|ae^{-x}+b|)/a+C#.
To see that this is the same as the second answer, note that
#x=ln(e^{x})=ln|e^{x}|# so that, by properties of logarithms,
#x-ln|a+be^{x}|=ln|e^{x}|-ln|a+be^{x}|#
#=ln|(e^{x})/(a+be^{x})|=-ln|(a+be^{x})/(e^{x})|=-ln|ae^{-x}+b|#.
Therefore, #int 1/(a+be^(x))dx=-(ln|ae^{-x}+b|)/a+C=x/a-(ln|a+be^{x}|)/a+C#.