Question #572cf

1 Answer
Jan 15, 2018

#sum_(n=0)^(49)10*(0.8)^n ~~ 49.99928638#

Explanation:

Sum of Infinite series is #S_oo= a/(1-r); |r| <1# where #a#

is first term and #r# is the common ratio. #a=10; S_oo=50#

#S_oo= a/(1-r) or 50 = 10/(1-r) or 50-50r =10# or

#50r=40 :. r=40/50=0.8#

Geometric series is # 10 , (10*0.8), (10*0.8^2),(10*0.8^3)...#

#sum_(n=0)^(49)10*(0.8)^n =a *(1-r^n)/(1-r) # or

#sum_(n=0)^(49)10*(0.8)^n =10 *(1-(0.8)^n)/(1-0.8) # or

#sum_(n=0)^(49)10*(0.8)^n ~~ 49.99928638# [Ans]