Question #89c39
2 Answers
Jan 17, 2018
Explanation:
#"given a quadratic in standard form"#
#•color(white)(x)f(x)=ax^2+bx+c color(white)(x)a!=0#
#"then the x-coordinate of the vertex is"#
#x_(color(red)"vertex")=-b/(2a)#
#f(x)=-x^2+4x+5" is in standard form"#
#"with "a=-1,b=4" and "c=5#
#rArrx_(color(red)"vertex")=-4/(-2)=2#
#"substitute this value into f(x) for y-coordinate"#
#rArry_(color(red)"vertex")=-(2)^2+4(2)+5=9#
#rArrcolor(magenta)"vertex "=(2,9)#
graph{-x^2+4x+5 [-20, 20, -10, 10]}
Jan 17, 2018
The vertex is
Explanation:
given quadratic equation
from this
from the vertex formula
let
put
hence the vertex is