If #pH=2.6# in aqueous solution, what is #pOH#?

2 Answers
Jan 18, 2018

We know that #pH+pOH=14# under standard conditions....

Explanation:

Now #pOH=-log_10[HO^-]...#

And here #pOH=-log_10(0.0025)=-(-2.60)=2.60#

And so #pH=14-2.60=11.4#

As to background, just to note that in aqueous solution under standard conditions, the ion product...

#K_w=[H_3O^+][HO^-]=10^(-14)#...

And we can take #log_10# of both sides to give....

#log_(10)K_w=log_(10)10^(-14)=log_10[H_3O^+]+log_10[HO^-]#.

And thus.... #-14=log_(10)[H_3O^+]+log_(10)[HO^-]#

Or.....

#14=-log_(10)[H_3O^+]-log_(10)[HO^-]#

#14=underbrace(-log_10[H^+])_(pH)underbrace(-log_10[OH^-])_(pOH)#

#14=pH+pOH#

And so here by definition, #-log_10[H^+]=pH#, #-log_10[HO^-]=pOH#

Jan 18, 2018

pH =11.40

Explanation:

We know that #"NaOH"# is a strong electrolyte. It dissociates completely in solution.

#color(white)(mmmmmml)"NaOH(aq)" → "Na"^"+""(aq)" + "OH"^"-""(aq)"#
#"I/mol·L"^"-1": color(white)(mm)0.0025 color(white)(mmmmm)0color(white)(mmmmll)0#
#"C/mol·L"^"-1": color(white)(m)"-0.0025"color(white)(mmm)"+0.0025"color(white)(mll)"+0.0025"#
#"E/mol·L"^"-1": color(white)(mmm)0color(white)(mmmmm)0.0025color(white)(mml)0.0025#

Thus, the concentration of #"OH"^"-"# is 0.0025 mol/L.

#"pOH = -log"["OH"^"-"] = "-log(0.0025) = 2.60"#

#"pH = 14.00 - pOH = 14.00 - 2.60 = 11.40"#