Given #x=sqrt(7+sqrt(7+sqrt(7+sqrt(7+cdots))))# and #y=sqrt(7-sqrt(7-sqrt(7-sqrt(7-cdots))))# calculate #x-y = # ?

1 Answer
Jan 21, 2018

#x-y=1#

Explanation:

From

#x=sqrt(7+sqrt(7+sqrt(7+sqrt(7+cdots))))#

and

#y=sqrt(7-sqrt(7-sqrt(7-sqrt(7-cdots))))#

we get

#x=sqrt(7+x)#
#y=sqrt(7-y)#

now squaring both sides

#x^2=7+x#
#y^2=7-y#

now subtracting side by side

#x^2-y^2=x+y rArr (x+y)(x-y)=x+y rArr x-y = 1#