Question #389da

1 Answer
Jan 26, 2018

2

Explanation:

If the problem is #lim_(x to 0)sin(2x)/(2x^2+x)# then direct substitution gives #0/0# so we can use L'Hopital's Rule:

#lim_(x to 0)sin(2x)/(2x^2+x) = lim_(x to 0) (d/dxsin(2x))/(d/dx(2x^2+x)) #

#=lim_(x to 0) (2cos(2x))/(4x+1) = 2/1=2#