Question #ecc3a

2 Answers
Feb 16, 2018

#int (3dx)/(x^2+x+1)=2sqrt3arctan((2x+1)/sqrt3)+C#

Explanation:

#int (3dx)/(x^2+x+1)#

=#int (12dx)/(4x^2+4x+4)#

=#6int (2dx)/[(2x+1)^2+3]#

=#2sqrt3arctan((2x+1)/sqrt3)+C#

Feb 16, 2018

#int\ 3/(x^2+x+1)\ dx=2sqrt3tan^-1((2x+1)/sqrt3)+C#

Explanation:

Whenever we have a quadratic in the denominator and no #x#'s in the numerator, we want to get the integral into the following form:
#int\ 1/(1+t^2)\ dt=tan^-1(t)+C#

In our case, we can do this by completing the square and then using a substitution.

#x^2+x+1=(x+1/2)^2+k#

#x^2+x+1=x^2+x+1/4+k#

#k=3/4#

#x^2+x+1=(x+1/2)^2+3/4#

#3int\ 1/(x^2+x+1)\ dx=3int\ 1/((x+1/2)^2+3/4)\ dx#

We want to introduce a u-substitution such that:
#(x+1/2)^2=3/4u^2#

We can solve for #x# to figure out what this substitution needs to be:
#x+1/2=sqrt3/2u#

#x=sqrt3/2u-1/2#

To integrate with respect to #u#, we multiply by the derivative of #x# with respect to #u#:
#dx/(du)=sqrt3/2#

#3int\ 1/((x+1/2)^2+3/4)\ dx=3*sqrt3/2int\ 1/(3/4u^2+3/4)\ du=#

#=3*sqrt3/2int\ 1/(3/4(u^2+1))\ du=3*sqrt3/2*4/3int\ 1/(u^2+1)\ du=#

#=2sqrt3tan^-1(u)+C#

We can now solve for #u# in terms of #x# to resubstitute:
#u=(2x+1)/sqrt3#

This means our final answer is:
#2sqrt3tan^-1((2x+1)/sqrt3)+C#