#(sqrt(6)+sqrt(2))/(sqrt(6)-sqrt(2)) + (sqrt(6)-sqrt(2))/(sqrt(6)+sqrt(2))# ?
1 Answer
# (sqrt(6)+sqrt(2))/(sqrt(6)-sqrt(2)) + (sqrt(6)-sqrt(2))/(sqrt(6)+sqrt(2)) = 4#
Explanation:
We seek the value of the expression:
# E = (sqrt(6)+sqrt(2))/(sqrt(6)-sqrt(2)) + (sqrt(6)-sqrt(2))/(sqrt(6)+sqrt(2)) #
We can add the fractions using a common denominator, thus:
# E = ( (sqrt(6)+sqrt(2))(sqrt(6)+sqrt(2)) +(sqrt(6)-sqrt(2))(sqrt(6)-sqrt(2))) / ((sqrt(6)-sqrt(2))(sqrt(6)+sqrt(2)) #
# \ \ = ( ( sqrt(6)sqrt(6) + 2sqrt(2)sqrt(6) + sqrt(2)sqrt(2) )(sqrt(6)sqrt(6)-2sqrt(2)sqrt(6)+sqrt(2)sqrt(2) )) / ( sqrt(6)sqrt(6) - sqrt(2)sqrt(2)) #
# \ \ = ( ( 6 + 2sqrt(12) + 2 )(6-2sqrt(12)+2 )) / ( 6 - 2) #
# \ \ = ( ( 8 + 2sqrt(12))(8-2sqrt(12) )) / ( 4 ) #
# \ \ = ( 8*8-2sqrt(12) * 2sqrt(12)) / ( 4 ) #
# \ \ = ( 64-4*12) / ( 4 ) #
# \ \ = ( 64-48) / ( 4 ) #
# \ \ = ( 16) / ( 4 ) #
# \ \ = 4 #