#9+17+32+61+118+231+456+---+n=?#
1 Answer
The sum to
#7*2^N+1/2N^2+3/2N-7#
Explanation:
Given:
#9+17+32+61+118+231+456+...#
It looks like the
#{ (a_1 = 9), (a_(n+1) = 2a_n - n " for " n >= 1) :}#
Consider the sequence defined by
#7, 14, 28, 56, 112, 224, 448,...#
Subtracting these from the given sequence, we get the sequence:
#2, 3, 4, 5, 6, 7, 8,...#
So it looks like we can assume the general formula:
#a_n = 7*2^(n-1)+n+1#
The general term of a geometric series can be written:
#b_n = b r^(n-1)#
where
Its sum to
#(b(r^N-1))/(r-1)#
Let
Then we find:
#sum_(n=1)^N 7*2^(n-1) = 7(2^N - 1)#
Note that:
#sum_(n=1)^N n = 1/2 N(N+1)#
Also:
#sum_(n=1)^N 1 = N#
So:
#sum_(n=1)^N a_n = sum_(n=1)^N (7*2^(n-1)+n+1)#
#color(white)(sum_(n=1)^N a_n) = sum_(n=1)^N 7*2^(n-1)+sum_(n=1)^N n+sum_(n=1)^N 1#
#color(white)(sum_(n=1)^N a_n) = 7(2^N-1)+1/2N(N+1)+N#
#color(white)(sum_(n=1)^N a_n) = 7*2^N-7+1/2N^2+1/2N+N#
#color(white)(sum_(n=1)^N a_n) = 7*2^N+1/2N^2+3/2N-7#