A 5.7 diameter horizontal pipe gradually narrows to 3.6 cm. The the water flows through this pipe at certain rate, the gauge pressure in these two sections is 32.5 kPa and 24.0 kPa, respectively. What is the volume of rate of flow?

1 Answer
Feb 1, 2018

Answer:

The flow rate is #=2.88m^3s^-1#

Explanation:

bryanuthm.blogspot.com

Apply Bernoulli's Principle

#P_1+1/2rhov_1^2+rhogz_1=P_2+1/2rhov_2^2+rhogz_2#

Since the Pipe is horizontal, #z_1=z_2#

So,

#P_1+1/2rhov_1^2=P_2+1/2rhov_2^2#

The flow rate is constant

#Q=A_1*v_1=A_2*v_2#

Where #v_1# and #v_2# are the velocities of water in the pipe.

Where #A_1, A_2# are the cross sectional areas of the pipe

#A_1=pid_1^2/4=pi*(5.7*10^-2)^2/4#

#A_2=pid_2^2/4=pi*(3.6*10^-2)^2/4#

Therefore,

#v_1=A_2/A_1*v_2#

#v_1=(pi*(3.6*10^-2)^2/4)/(pi*(5.7*10^-2)^2/4)*v_2#

#v_1=(3.6/5.7)^2v_2#

#v_1=0.4v_2#

The pressures are

#P_1=32.5kPa#

#P_2=24kPa#

And the density of water is #rho=1000kgm^-3#

Therefore,

#32.5*10^3+1/2*1000*0.4v_2=24*10^3+1/2*1000*v_2#

#v_2(1/2*1000-1/2*1000*0.4)=(32.5-24)*10^3#

#v_2*1/2*1000*0.6=8.5*1000#

#v_2=(2*8.5)/0.6=28.33ms^-1#

Finally,

The flow rate is #Q=A_2v_2=pi*(3.6*10^-2)^2/4*28.33#

#=2.88m^3s^-1#