A ball with a mass of #12 kg# moving at #3 m/s# hits a still ball with a mass of #21 kg#. If the first ball stops moving, how fast is the second ball moving? How much kinetic energy was lost as heat in the collision?

1 Answer
May 14, 2016

#vec v_1^'=-9/11 " "m/s#
#v_2^'=24/11 " "m/s#

Explanation:

#"Momentums before collision :"#

#vec P_1=m_1*vec v_1" (for the first object)"#
#vec P_1=12*3=" "36 kg.m/s#

#vec P_2=m_2*vec v_2" (for the second object)"#
#vec P_2=21*0=0#

#Sigma vec P_b=vec P_1+ vec P_2" (total momentum before collision)"#
#Sigma vec P_b=36+0=36" " kg*m/s#

#"Momentums after collision :"#

#vec P_1^'=m_1*v_1^'" (for the first object)"#
#vec P_1^'=12*v_1^'#

#vec P_2^'=m_2*v_2^'" (for the second object)"#
#vec P_2^'=21*v_2^'#

#Sigma vec P_a=vec P_1^'+vec P_2^'" (total momentum after collision)"#
#Sigma vec P_a=12*v_1^'+21*v_2^'#

#Sigma vec P_b=Sigma vec P_a" (conservation of momentum")#
#36=12*vec v_1^'+21*vec v_2^'" (1)"#

#"We can fallow two ways to solve problem:"#

#"1 )............................................................"#

#v_1+v_1^'=v_2+v_2^' " (using the conservation of kinetic energy)"#
#3+v_1^'=0+v_2^'#
#v_2^'=3+v_1^' " (2)"#

#"let' use (1)" #
#36=12*vec v_1^'+21*(3+vec v_1^')#
#36=12*vec v_1^'+63+21*vec v_1^'#
#36-63=33*vec v_1^'#
#-27=33*vec vec v_1^'#

#vec v_1^'=-27/33" "vec v_1^'=-9/11 " "m/s#

#"now ,let's use (2)"#

#vec v_2^'=3+vec v_1^'#
#vec v_2^'=3-9/11" "vec v_2^'=(33-9)/11" "v_2^'=24/11 " "m/s#

#"2)............................................................."#

#v_1^'=(2*Sigma vec P_b)/(m_1+m_2)-v_1#

#v_1^'=(2*36)/(12+21)-3#

#v_1^'=72/33-3" "v_1^'=(72-99)/33 " "v_1^'=-27/33=-9/11 " m/s" #

#v_2^'=(2*Sigma vec P_b)/(m_1+m_2)-v_2#

#v_2^'=(2*36)/(12+21)-0#

#v_2^'=72/33=" "v_2^'=24/11 " "m/s#