A cone has a height of #24 cm# and its base has a radius of #8 cm#. If the cone is horizontally cut into two segments #15 cm# from the base, what would the surface area of the bottom segment be?

1 Answer
Apr 24, 2017

#:.color(purple)(=747.46cm^2# to the nearest # cm^2#

Explanation:

enter image source here

:.Pythagoras: #c^2=24^2+8^2#

#:.c=L=sqrt(24^2+8^2)#

#:. c=Lcolor(purple)(=25.298cm#

#:.24/8=tan theta=3.0=71^@33’54”#

:.#color(purple)(S.A.#= pir^2+pir*L#

:.S.A.#=3.141592654*8^2+pi*8*25.298#

:.S.A.#=201.062+635.808#

:.Total S.A.#color(purple)(=836.870cm^2#

#:.Cot 71^@33’54”*9=3.0cm=#radius of top part

:.Pythagoras: #c^2=9^2+3.0^2#

#:.c=L=sqrt(9^2+3.0^2)#

#:. c=Lcolor(purple)(=9.487cm# top part

:.S.A. top part#=pi*r^2+pi*r*L#

S.A. top part#:.3.141592654*3.0^2+pi*3.0*9.487#

S.A. top part#:.=28.274+89.413#

S.A. top part#:.color(purple)(=117.687cm^2#

:.S.A. Botom part#color(purple)(=836.870-117.687=719.183cm^2#

The total surface area of the bottom part got to include
the surface area of the circle of the top part.
:.S.A. Botom part:.=28.274+719.183=747.457 cm^2#

#:.color(purple)(=747.46cm^2# to the nearest 2 decimal places #