A given rectangle has an area of #x^2-3x# and a width of #x#. What is the rectangle's length?

2 Answers
Mar 14, 2018

The rectangle's length is #x-3#.

Explanation:

We know that the area of a rectangle can be defined as:

#color(white)=>A_"rectangle"="length"xx"width"#

which can be rearranged to be:

#color(white)=>A_"rectangle"/"width"="length"#

Now, we can plug in our values; we know that the area is #x^2-3x# and the width is #x#:

#color(white)=>A_"rectangle"/"width"="length"#

#=>(x^2-3x)/x="length"#

#color(white)=>(x^color(red)cancelcolor(black)2-3color(red)cancelcolor(black)x)/color(red)cancelcolor(black)x="length"#

#color(white)=>(x-3)/1="length"#

#color(white)=>x-3="length"#

That's the answer. Hope this helped!

Mar 14, 2018

#L=x-3#

Explanation:

Area of a rectangle#=LxxW#

#:.LxxW=x^2-3x# and #W=x#

#:.xxxL=x^2-3x#

#:.L=(x^2-3x)/x#

#:.L=(cancelx^1(x-3))/cancelx^1#

#:.L=x-3#